O.P.Code: 20CE0114

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular & Supplementary Examinations August-2023 GEOTECHNICAL ENGINEERING

		GEOTECHNI					
Tit	me: 3 Hours	(CIVII	l Engineerin	.g)	Max.	Mark	s: 60
		(Answer all Fiv	e Units 5 x	12 = 60 Marks)			
			UNIT-I				
1	a Define the terms:				CO1	L1	6M
		(i) Liquidity index (ii) Flow index (iii) Toughness index (iv) Activity					
	b Determine the average	d CO2	L4	6M			
	vertical direction for a	vertical direction for a deposit consisting of three layers of thickness 5m,					
	1m, and 2.5m and ha	1m, and 2.5m and having the coefficient of permeability of 3 x10 ⁻²					
	mm/sec,3x10 ⁻⁵ mm/sec	and 4×10^{-2} mm.	sec respect	ively.			
			OR				
2	a The mass of a moist s					L2	6M
	oven dry mass is505 g						
	field is 0.83, determine the field, (iii) degree of	` '	•		n		
	b What is effective stres	,	. ,	•	n CO2	L2	6M
	geotechnical engineeri	_	importance	of effective stress f	11 CO2	LLE	OIVI
	gootoommour ongmoorn		UNIT-II				
3	For constructing an embar	a CO3	L4	12M			
	using a truck which can						
	details, determine the nur						
	m ³ of compacted earth fill						
	Property						
	Bulk Unit	(In-situ)	(Loose)	(Compacted)			
	Weight (kN/m³)	16.6	11.5				
	Water Content (%)	14	8 OD	6			
4	a What is consolidation	OR					
*	of soils.	a What is consolidation? Describe briefly various types of consolidation					
	b In a consolidation test	the following re	sults have	been obtained. Whe	n CO3	L4	6M
	the load was changed						
	changed from 0.70 to 0						
	volume change and coe						
		*	UNIT-III				
5	a A circular ring footing		L4	6M			
	kN whose outer diame						
	the induced stress at a	е					
	loaded area.	· CO4	т 2	CM			
	b What are the various r laboratory?	e CU4	1.2	6 M			
	laboratory:		OR				
6	a A water tank is suppor	of CO4	L3	6M			
Ů	a A water tank is supported by a ring foundation having outer diameter of 10 m and inner diameter of 7.5 m. The ring foundation transmits						_
	uniform load intensity						
				o the vertical bures	-		
	induced at depth of 4 m	, below the centi	re of ring fo	undation.			
		, below the centi	re of ring fo	undation.	CO4	L2	6M

	UNIT-IV			
7	a Explain Taylor's stability number.	CO ₅	L2	6M
	b A vertical cut is made is made in a clay deposit (c=30 kN/m ² , Φ ' = 0 ⁰ , γ =16 kN/m ²). Find the maximum height which can be temporarily supported. Take Sn=0.261	CO5	L3	6M
	OR			
8	A canal is to be excavated through a soil with $c = 15 \text{ kN/m}^2$, $\Phi = 20^0$, $e = 0.9$ and $G = 2.67$. The side slope is 1 in 1. The depth of the canal is 6 m.	CO5	L3	12M
	determine the factor of safety with respect to cohesion when the canal runs full. What will be the factor of safety if the canal is rapidly emptied? UNIT-V			
9	Give a detailed account on how Standard Penetration Test is conducted. What are the relevant corrections applied to SPT number?	CO6	L2	12M
	OR			
10	a What are the different stages in sub soil exploration?	CO6	L1	6M
	b How boring operations are carried out using rotary auger boring and drilling?	CO6	L2	6M